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FIG. 17: Number of amyloplasts in a .25 µm radius bin vs
amyloplast radius (= half amyloplast length).
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VI. THEORY

The appendices contain seven mathematical tutorials.
Appendix A contains a derivation due to Langevin, of

the well known expression, given first by Einstein[76], for
the mean-square displacement of an object undergoing
Brownian motion[77]. The method is easily applied to
give the mean-square angular displacement of an object
undergoing Brownian rotation.

These expressions depend upon the viscous force or vis-
cous torque on the object. Such fluid flow analysis is not
treated in places which treat the material of Appendix A.
The results for a sphere are derived in Appendix B[78].
For an ellipsoid, results are just cited[79].

Appendix C presents a derivation of geometrical op-
tics starting from the wave equation. The discussion
here, utilizing the WKB approximation in 3 dimensions,
does not seem to be given elsewhere, although the re-
sult (the eikonal approximation of geometrical optics) is
well known. Appendix D, a digression, applies this re-
sult to mirrors and lenses. It is emphasized, because of

FIG. 18: Amyloplasts photographed with the ball lens micro-
scope. The superimposed scale marks (the faint horizontal
lines) are 10µm apart.

the approximate solution’s abrupt discontinuities at the
boundaries of mirrors and lenses, that it must be modi-
fied in order to better satisfy the wave equation.

Appendix E contains the modification, obtaining from
Green’s theorem, in a standard way, the Huyghens-
Fresnel-Kirchhoff expression for a diffracted wave ema-
nating a lens[80]. Then, in Appendix F, this theory is
used to discuss lens imaging of a point source. Usually,
books on optics discuss the diffraction of a lens (due to
its limited aperture) and the spherical aberration of a
lens (due to the image made by rays at the rim of the
lens having a different focal plane than the image made
by near-axial rays) separately. Then, no expression is
given for their combined intensity. Here, diffraction and
spherical aberration receive a unified treatment. As a
concrete example, the theory is applied to what is seen
through a 1mm diameter ball lens used as a microscope.
The optimum choice for the exit pupil for such a lens, to
minimize spherical aberration, is discussed.

Appendix G applies these results for a point source to
an extended light source, an illuminated hole of radius a.
The apparent radius of the image is discussed, for small
and large a. As discussed in section III H, results are
obtained which illuminate (sic) Brown’s observations of
“molecular” size,


